Given, for x∈R f(x)=∣sinx∣ g(x)=0∫xf(t)dt, and p(x)=g(x)−π2x ∵P(x+π)=g(x+π)−π2(x+π) =0∫x+π∣sin(t)∣dt−π2x−2 =0∫π∣sint∣dt+π∫π+x∣sint∣dt−π2x−2 =20∫π/2sintdt+0∫x∣sint∣dt−π2x−2 [∵∣sint∣ is periodic function having period π] =2[−cost]0π2+g(x)−π2x−2 =2(0−(−1))+g(x)−π2x−2 =2(0−(−1))+g(x)−π2x−2 =2+g(x)−π2x−2=g(x)−π2 x=p(x) ∴p(x+π)=P(x) for all x