Q.
For x∈R−{0,1} , let f1(x)=x1,f2(x)=1−x and f3(x)=1−x1 be three given functions. If a function, J(x) satisfies (f2∘J∘f1)(x)=f3(x) then J(x) is equal to :-
Given f1(x)=x1,f2(x)=1−x and f3(x)=1−x1 (f2∘J∘f1)(x)=f3(x) f2∘(J(f1(x)))=f3(x) f2∘(J(x1))=1−x1 1−J(x1)=1−x1 J(x1)=1−1−x1=1−x−x=x−1x
Now x→x1 J(x)=x1−1x1=1−x1=f3(x)