We have, fn(x)=∫nsin2x(sin2n−2x−cos2n−2x)dx−2n−11 =2n∫(cosx⋅sin2n−1x−sinxcos2n−1x)dx−2n−11 =2n(2nsin2nx+2ncos2nx)−2n−11+C=sin2nx+cos2nx−2n−11+C As, fn(4π)=2n−11⇒2n1+2n1−2n−11+C=2n−11⇒C=2n−11 ∴fn(x)=sin2nx+cos2nx
We have, g(x)=n→∞Lim(n=1∑n(sin2nx+cos2nx)) =(sin2x+sin4x+sin6x+………)+(cos2x+cos4x+cos6x+… =1−sin2xsin2x+1−cos2xcos2x=tan2x+cot2x=(tanx−cotx)2+2
Hence minimum value of g(x) is 2 .