Q.
For $x \in\left(0, \frac{\pi}{2}\right)$, let $f_n(x)=\int n \sin 2 x\left(\sin ^{2 n-2} x-\cos ^{2 n-2} x\right) d x-\frac{1}{2^{n-1}}, n \in N$ and $f_n\left(\frac{\pi}{4}\right)=\frac{1}{2^{n-1}}$.
If $g(x)=\operatorname{Lim}_{n \rightarrow \infty} \sum_{n=1}^n f_n(x)$ then minimum value of $g(x)$, is
Application of Derivatives
Solution: