Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For x ∈(0, (π/2)), let fn(x)=∫ n sin 2 x( sin 2 n-2 x- cos 2 n-2 x) d x-(1/2n-1), n ∈ N and fn((π/4))=(1/2n-1). The derivative of f n ( x ) when n =2 and x =(π/3), is
Q. For
x
∈
(
0
,
2
π
)
, let
f
n
(
x
)
=
∫
n
sin
2
x
(
sin
2
n
−
2
x
−
cos
2
n
−
2
x
)
d
x
−
2
n
−
1
1
,
n
∈
N
and
f
n
(
4
π
)
=
2
n
−
1
1
.
The derivative of
f
n
(
x
)
when
n
=
2
and
x
=
3
π
, is
47
109
Application of Derivatives
Report Error
A
1
B
2
3
C
0
D
2
1
Solution:
We have,
f
n
(
x
)
=
∫
n
sin
2
x
(
sin
2
n
−
2
x
−
cos
2
n
−
2
x
)
d
x
−
2
n
−
1
1
=
2
n
∫
(
cos
x
⋅
sin
2
n
−
1
x
−
sin
x
cos
2
n
−
1
x
)
d
x
−
2
n
−
1
1
=
2
n
(
2
n
s
i
n
2
n
x
+
2
n
c
o
s
2
n
x
)
−
2
n
−
1
1
+
C
=
sin
2
n
x
+
cos
2
n
x
−
2
n
−
1
1
+
C
As,
f
n
(
4
π
)
=
2
n
−
1
1
⇒
2
n
1
+
2
n
1
−
2
n
−
1
1
+
C
=
2
n
−
1
1
⇒
C
=
2
n
−
1
1
∴
f
n
(
x
)
=
sin
2
n
x
+
cos
2
n
x
We have,
f
2
(
x
)
=
sin
4
x
+
cos
4
x
=
1
−
2
1
sin
2
2
x
f
2
′
(
x
)
=
−
sin
4
x
⇒
f
2
′
(
3
π
)
=
−
sin
(
3
4
π
)
=
2
3