Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For x ϵ R , f (x) = | log 2 - sin x| and g(x) = f(f(x)), then :
Q. For
x
ϵ
R
,
f
(
x
)
=
∣
lo
g
2
−
sin
x
∣
and
g
(
x
)
=
f
(
f
(
x
))
, then :
3174
191
JEE Main
JEE Main 2016
Continuity and Differentiability
Report Error
A
g
is not differentiable at
x
=
0
17%
B
g
′
(
0
)
=
cos
(
l
o
g
2
)
46%
C
g
′
(
0
)
=
−
cos
(
l
o
g
2
)
8%
D
g
is differentiable at
x
=
0
and
g
′
(
0
)
=
−
s
in
(
l
o
g
2
)
29%
Solution:
g
(
x
)
=
∣
lo
g
e
2
−
sin
(
∣
lo
g
e
2
−
sin
x
∣
)
∣
At
x
=
0
,
g
(
x
)
=
lo
g
e
(
2
)
−
sin
(
lo
g
e
2
−
sin
x
)
∴
g
′
(
x
)
=
cos
(
lo
g
e
(
2
)
−
sin
x
)
×
cos
(
x
)
⇒
g
′
(
0
)
=
cos
(
lo
g
e
(
2
)
)