Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For x2 ≠ n π + 1, n ∈ N (the set of natural numbers), the integral ∫ x √(2 sin(x2+1)- sin 2(x2-1)/2 sin(x2 -1)+ sin 2(x2 -1))dx is equal to: (where c is a constant of integration)
Q. For
x
2
=
nπ
+
1
,
n
∈
N
(the set of natural numbers), the integral
∫
x
2
s
i
n
(
x
2
−
1
)
+
s
i
n
2
(
x
2
−
1
)
2
s
i
n
(
x
2
+
1
)
−
s
i
n
2
(
x
2
−
1
)
d
x
is equal to :
(where c is a constant of integration)
3989
177
JEE Main
JEE Main 2019
Integrals
Report Error
A
lo
g
e
∣
∣
sec
(
2
x
2
−
1
)
∣
∣
+
c
55%
B
lo
g
e
∣
∣
2
1
sec
2
(
x
2
−
1
)
∣
∣
+
c
15%
C
2
1
lo
g
e
∣
∣
sec
2
(
2
x
2
−
1
)
∣
∣
+
c
16%
D
2
1
lo
g
e
∣
∣
sec
(
x
2
−
1
)
∣
∣
+
c
14%
Solution:
Put
(
x
2
−
1
)
=
1
⇒
2
x
d
x
=
d
t
∴
I
=
2
1
∫
1
+
c
o
s
t
1
−
c
o
s
t
d
t
=
2
1
∫
tan
(
2
t
)
d
t
=
l
n
∣
∣
sec
2
t
∣
∣
+
c
I
=
l
n
∣
∣
sec
(
2
x
2
−
1
)
∣
∣
+
c