Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For x > 1, if (2x)2y = 4e2x - 2y, then ( 1 + loge 2x)2 (dy/dx) is equal to :
Q. For
x
>
1
, if
(
2
x
)
2
y
=
4
e
2
x
−
2
y
, then
(
1
+
lo
g
e
2
x
)
2
d
x
d
y
is equal to :
3800
212
JEE Main
JEE Main 2019
Continuity and Differentiability
Report Error
A
lo
g
e
2
x
15%
B
x
x
l
o
g
e
2
x
+
l
o
g
e
2
26%
C
x
lo
g
e
2
x
14%
D
x
x
l
o
g
e
2
x
−
l
o
g
e
2
45%
Solution:
(
2
x
)
2
y
=
4
e
2
x
−
2
y
2
y
ℓ
n
2
x
=
ℓ
n
4
+
2
x
−
2
y
y
=
1
+
ℓ
n
2
x
x
+
ℓ
n
2
y
′
=
(
1
+
ℓ
n
2
x
)
2
(
1
+
ℓ
n
2
x
)
−
(
x
+
ℓ
n
2
)
x
1
y
′
=
1
+
ℓ
n
2
x
)
2
=
[
x
x
ℓ
n
2
x
−
ℓ
n
2
]