Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For x >0, undersetx arrow 0 textLim (( tan x)(1/x)+(1+ sin x)x+( cot x)x) is equal to
Q. For
x
>
0
,
x
→
0
Lim
(
(
tan
x
)
x
1
+
(
1
+
sin
x
)
x
+
(
cot
x
)
x
)
is equal to
111
86
Continuity and Differentiability
Report Error
A
1
B
0
C
2
D
non existent
Solution:
x
→
0
Lim
(
tan
x
)
x
1
=
x
→
0
Lim
(
tan
h
)
h
1
=
0
x
→
0
Lim
(
1
+
sin
x
)
x
=
(
1
+
0
)
0
=
1
Let
l
=
x
→
0
Lim
(
cot
x
)
x
(
∞
0
form
)
∴
ln
l
=
x
→
0
Lim
x
ln
(
cot
x
)
=
x
→
0
Lim
x
1
l
n
(
c
o
t
x
)
=
x
→
0
Lim
x
2
−
1
c
o
t
x
−
cosec
2
x
=<
b
r
/
>
x
→
0
Lim
(
s
i
n
2
x
x
2
)
tan
x
=
0
(Using L'Hospital's Rule)
⇒
l
=
1
Hence
x
→
0
Lim
(
(
tan
x
)
x
1
+
(
1
+
sin
x
)
x
+
(
cot
x
)
x
)
=
0
+
1
+
1
=
2