Q.
For what values of ‘p’ the function f(n)={px2+1x−pif x≤1if x>1 is derivable at x = 1?
2020
203
Continuity and Differentiability
Report Error
Solution:
For f (x) to be derivable at x = 1
RHD of f (x) = LHD of f(x) at x = 1 ⇒Rf′(1)=h→0limhf(1+h)−f(1) =h→0limhh=1 Lf′(1)=h→0lim−hf(1−h)−f(1)
= h→0lim−hp(1−h)2+1−(p−1)
= h→0lim−hp(1−h2−2h)+1−(p+1)
= h→0lim−hp(h2−2h)
= h→0lim(h−2)p=2p
Now, Rf′(1)=Lf′(1) ⇒1=2p ⇒p=21