The given system of equations are : p3x+(p+1)3y=(p+2)3...(1) px+(p+1)y=p+2...(2) x+y=1...(3)
This system is consistent, if values of x and y from first two equation satisfy the third equation.
which ⇒∣∣p3p1(p+1)3(p+1)1(p+2)3(p+2)1∣∣=0 ⇒∣∣p3p1(p+1)3−p310(p+2)3−p320∣∣=0 ⇒2(p+1)3−2p3−(p+2)3+p3=0 ⇒2(p3+1+3p2+3p)−2p3−(p3+8+12p+6p2)+p3=0 ⇒2p3+2+6p2+6p−2p3−p3−8−12p−6p2+p3=0 ⇒−6−6p=0 ⇒p=−1