Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For θ ∈[0, π], let f(θ)= sin ( cos θ) and g (θ)= cos ( sin θ) . Let a = max 0 ≤ θ ≤ π f (θ), b = min 0 ≤ θ ≤ π f (θ), c = max 0 ≤ θ ≤ π g (θ) and d = min 0 ≤ θ ∈ π g (θ). The correct inequalities satisfied by a , b , c , d are
Q. For
θ
∈
[
0
,
π
]
, let
f
(
θ
)
=
sin
(
cos
θ
)
and
g
(
θ
)
=
cos
(
sin
θ
)
.
Let
a
=
max
0
≤
θ
≤
π
f
(
θ
)
,
b
=
min
0
≤
θ
≤
π
f
(
θ
)
,
c
=
max
0
≤
θ
≤
π
g
(
θ
)
and
d
=
min
0
≤
θ
∈
π
g
(
θ
)
. The correct inequalities satisfied by
a
,
b
,
c
,
d
are
1966
229
KVPY
KVPY 2020
Report Error
A
b< d < c < a
B
d < b < a < c
C
b< d < a < c
D
b < a < d < c
Solution:
f
(
θ
)
=
sin
(
cos
θ
)
g
(
θ
)
=
cos
(
sin
θ
)
f
′
(
θ
)
=
cos
(
cos
θ
)
(
−
sin
θ
)
<
0∀
θ
∈
[
0
,
π
]
∴
f
(
θ
)
decreases monotonically
∴
a
=
max
f
(
θ
)
=
f
(
0
)
=
sin
1
b
=
min
f
(
θ
)
=
f
(
π
)
=
−
sin
1
g
′
(
θ
)
=
−
sin
(
sin
θ
)
cos
θ
g
(
θ
)
=
1
;
g
(
π
)
=
1
;
g
(
2
π
)
=
cos
1
∴
c
=
max
g
(
θ
)
=
1
d
=
min
g
(
θ
)
=
cos
1
∴
b
<
d
<
a
<
c