Given, f(x)=100x100+99x99+…+2x2+x+1 ⇒f′(x)=100100x99+9999x98+…+22x+1+0 [∵f(x)=xn⇒f′(x)=nxn−1] ⇒f′(x)=x99+x98+…+x+1...(i)
Putting x=1, we get f′(1)=100 times (1)99+198+…+1+1=100 times 1+1+1…+1+1 ⇒f′(1)=100...(ii)
Again, putting x=0, we get f′(0)=0+0+…+0+1 ⇒f′(0)=1...(iii)
From eqs. (ii) and (iii), we get f′(1)=100f′(0)
Hence, m=100