Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For the function f(x)=(x-1)(x-2) defined on [0, (1/2)], the value of c satisfying Lagrange's mean value theorem is
Q. For the function
f
(
x
)
=
(
x
−
1
)
(
x
−
2
)
defined on
[
0
,
2
1
]
, the value of
c
satisfying Lagrange's mean value theorem is
1539
208
AP EAMCET
AP EAMCET 2017
Report Error
A
5
1
B
3
1
C
7
1
D
4
1
Solution:
We have a function
f
(
x
)
=
(
x
−
1
)
(
x
−
2
)
=
x
2
−
3
x
+
2
defined on
[
0
,
2
1
]
According to LMV theorem,
f
′
(
c
)
=
b
−
a
f
(
b
)
−
f
(
a
)
=
2
1
−
0
f
(
2
1
)
−
f
(
0
)
⇒
2
c
−
3
=
2
1
(
−
2
1
)
(
−
2
3
)
−
(
−
1
)
(
−
2
)
⇒
2
c
−
3
=
2
(
4
3
−
2
)
⇒
2
c
−
3
=
−
2
5
⇒
4
c
−
6
=
−
5
⇒
c
=
4
1
∈
(
0
,
2
1
)
Thus, required value of
c
is
4
1
.