Q.
For the function, f(x)=excosx,x∈[0,2π] , the slope of the tangent at any point on the curve of the function is minimum at
2558
201
NTA AbhyasNTA Abhyas 2020Application of Derivatives
Report Error
Solution:
f(x)=excosx f′(x)=−exsinx+excosx f′(x)=ex(cosx−sinx)
Let g(x)=ex[cosx−sinx] is the slope of the tangent to the curve, then, g′(x)=ex[−sinx−cosx]+ex[cosx−sinx] =ex[−sinx−cosx+cosx−sinx] g′(x)=−2exsinx⇒x=0,π,2π
So it is minima at x=π