Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For the equation (1 - i x/1 + i x)=sin(π /7)-icos(π /7) , if x=cot((k π /28)) , then the value of k can be (where i2=-1 )
Q. For the equation
1
+
i
x
1
−
i
x
=
s
in
7
π
−
i
cos
7
π
, if
x
=
co
t
(
28
kπ
)
, then the value of
k
can be (where
i
2
=
−
1
)
1939
254
NTA Abhyas
NTA Abhyas 2020
Complex Numbers and Quadratic Equations
Report Error
A
1
B
3
C
5
D
9
Solution:
Applying Componendo and Dividendo, we get,
(
1
−
i
x
)
−
(
1
+
i
x
)
(
1
−
i
x
)
+
(
1
+
i
x
)
=
s
in
7
π
−
i
cos
7
π
−
1
s
in
7
π
−
i
cos
7
π
+
1
−
2
i
x
2
=
−
1
+
cos
14
5
π
−
i
s
in
14
5
π
1
+
cos
14
5
π
−
i
s
in
14
5
π
−
i
x
=
2
co
s
2
28
5
π
−
i
2
s
in
28
5
π
cos
28
5
π
−
2
s
i
n
2
28
5
π
−
i
2
s
in
28
5
π
cos
28
5
π
x
=
2
cos
28
5
π
(
cos
28
5
π
−
i
s
in
28
5
π
)
×
i
2
s
in
28
5
π
(
s
in
28
5
π
+
i
cos
28
5
π
)
⇒
x
=
t
an
28
5
π
=
co
t
28
9
π