(α,α) lies on C:(x2+y2−3)+(x2−y2−1)5=0
Put (α,α),(2α2−3)+(−1)5=0 ⇒α=2
Now, differentiate C 2x+2y⋅y′+5(x2−y2−1)4(2x−2yyy′)=0......(1)
At (2,2) 2+2y′+5(−1)4(2−2y′)=0 ⇒y′=23.....(2)
Diff. (1) w.r.t. x
Again, Diff. (1) w.r.t. x 1+(y′)2+yy′′+20(x2−y2−1)3(x−yy′)2⋅2+5(x2−y2−1)4(1−(y′)2−yy′′)=0
At (2,2) and y′=23
We have, (1+49)+2y′′−40(2−2⋅23)2 +5(1)(1−49−2y′′)=0 ⇒42y′′=−23 ∴3y′−y3y′′=29+223=16