Q.
For t∈(0,2π), if ABC is an equilateral triangle with vertices
A(sint,−cost),B(cost,sint) and C(a,b) such that its orthocentre lies on a circle with centre (1,31), then (a2−b2) is equal to :
s≡sint,c≡cost
Let orthocentre be (h,k)
Since it if an equilateral triangle hence orthocentre coincides with centroid. ∴a+s+c=3h,b+s−c=3k ∴(3h−a)2+(3k−b)2=(s+c)2+(s−c)2=2(s2+c2)=2 ∴(h−3a)2+(K−3b)2=92 circle centre at (3a,3b) Gives, 3a=1,3b=31⇒a=3,b=1 ∴a2−b2=8