Q.
For some θ∈(0,2π), if the eccentricity of the hyperbola, x2−y2sec2θ=10 is 5 times the eccentricity of the ellipse, x2sec2θ+y2=5, then the length of the latus rectum of the ellipse, is:
Given θ∈(0,2π)
equation of hyperbola ⇒x2−y2sec2θ=10 ⇒10x2−10cos2θy2=1
Hence eccentricity of hyperbola (eH)=1+1010cos2θ…(1){e=1+a2b2}
Now equation of ellipse ⇒x2sec2θ+y2=5 ⇒5cos2θx2+5y2=1{e=1−b2a2}
Hence eccenticity of ellipse (eE)=1−55cos2θ (eE)=1−cos2θ=∣sinθ∣=sinθ…(2) {∵θ∈(0,2π)}
given ⇒eH=5e
Hence 1+cos2θ=5sin2θ 1+cos2θ=5(1−cos2θ) 1+cos2θ=5−5cos2θ 6cos2θ=4 cos2θ=32…(3)
Now length of latus rectum of ellipse =b2a2=510cos2θ=3520=345