Let y=x−cx2−(a+b)x+ab ⇒yx−cy=x2−(a+b)x+ab ⇒x2−(a+b+y)x+(ab+cy)=0
For real roots,D≥0 ⇒(a+b+y)2−4(ab+cy)≥0 ⇒(a+b)2+y2+2(a+b)y−4ab−4cy≥0 ⇒y2+2(a+b−2c)y+(a−b)2≥0
which is true for all real values of y. ∴D≤0 4(a+b−2c)2−4(a−b)2≤0 ⇒4(a+b−2c+a−b)(a+b−2c−a+b)≤0 ⇒(2a−2c)(2b−2c)≤0 ⇒(a−c)(b−c)≤0 ⇒(c−a)(c−b)≤0 ⇒c must lie between a and b
i.e. a≤c≤b or b≤c≤a