Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For real numbers a, b (a> b >0), let Area (x, y): x2+y2 ≤ a2. and .(x2/a2)+(y2/b2) ≥ 1 =30 π and Area (x, y): x2+y2 ≥ b2. and .(x2/a2)+(y2/b2) ≤ 1 =18 π Then the value of (a- b )2 is equal to .
Q. For real numbers
a
,
b
(
a
>
b
>
0
)
, let
Area
{
(
x
,
y
)
:
x
2
+
y
2
≤
a
2
and
a
2
x
2
+
b
2
y
2
≥
1
}
=
30
π
and
Area
{
(
x
,
y
)
:
x
2
+
y
2
≥
b
2
and
a
2
x
2
+
b
2
y
2
≤
1
}
=
18
π
Then the value of
(
a
−
b
)
2
is equal to ________.
839
147
JEE Main
JEE Main 2022
Application of Integrals
Report Error
Answer:
12
Solution:
given
π
a
2
−
πab
=
30
π
and
πab
−
π
b
2
=
18
π
on subtracting, we get
(
a
−
b
)
2
=
a
2
−
2
ab
+
b
2
=
12