Q.
For r=0,1,...,10, if Ar,Br and Cr denote respectively the coefficient of xr in the expansions of (1+x)10,(1+x)20 and (1+x)30.
Then, r=0∑10Ar(B10Br−C10Ar) is equal to
Ar = Coefficient of xr in (1+x)10=10Cr Br= Coefficient of xr in (1+x)20=20Cr Cr= Coefficient of xr in (1+x)30=30Cr ∴r=1∑10Ar(B10Br−C10Ar)=r=1∑10ArB10Br−r=1∑10ArC10Ar
=r=1∑1010Cr20C1020Cr−r=1∑1010Cr30C1010Cr
=r=1∑1010C10−r20C1020Cr−r=1∑1010C10−r30C1010Cr
=20C10r=1∑1010C10−r.20Cr−30C10r=1∑1010C10−r10Cr =20C10(30C10−1)−30C10(20C10−1) =30C10−20C10=C10−B10