Using A.M.≥G.M. one can show that (b+c)(c+a)(a+b)≥8abc ⇒(p−a)(p−b)(p−c)≥8abc
Therefore, (b) holds. Also, 3(p−a)+(p−b)+(p−c)≥[(p−a)(p−b)(p−c)]1/3
or 33p−(a+b+c)≥[(p−a)(p−b)(p−c)]1/3
or 32p≥[(p−a)(p−b)(p−c)]1/3
or (p−a)(p−b)(p−c)≤278p3
Therefore, (a) holds. Again, 21(abc+bca)≥(abcbca)
and so on. Adding the inequalities, we get abc+bca+cab≥a+b+c=p
Therefore, (c) does not hold.