Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For positive integer n, if f (n) = sinn θ + cosn θ Then (f (3) - f(5)/f(5) - f(7)) is
Q. For positive integer
n
, if
f
(
n
)
=
sin
n
θ
+
co
s
n
θ
Then
f
(
5
)
−
f
(
7
)
f
(
3
)
−
f
(
5
)
is
1538
197
UPSEE
UPSEE 2018
Report Error
A
f
(
3
)
f
(
1
)
33%
B
f
(
1
)
f
(
3
)
0%
C
f
(
5
)
f
(
3
)
44%
D
f
(
7
)
f
(
5
)
22%
Solution:
Given,
f
(
n
)
=
sin
n
θ
+
cos
n
θ
∀
n
∈
I
+
Now,
f
(
5
)
−
f
(
7
)
f
(
3
)
−
f
(
5
)
=
s
i
n
5
θ
+
c
o
s
5
θ
−
s
i
n
7
θ
−
c
o
s
7
θ
s
i
n
3
θ
+
c
o
s
3
θ
−
s
i
n
5
θ
−
c
o
s
5
θ
=
s
i
n
5
θ
−
s
i
n
7
θ
+
c
o
s
5
θ
−
c
o
s
7
θ
s
i
n
3
θ
−
s
i
n
5
θ
+
c
o
s
3
θ
−
c
o
s
5
θ
=
s
i
n
5
θ
(
1
−
s
i
n
2
θ
)
+
c
o
s
5
θ
(
1
−
c
o
s
2
θ
)
s
i
n
3
θ
(
1
−
s
i
n
2
θ
)
+
c
o
s
3
θ
(
1
−
c
o
s
2
θ
)
=
s
i
n
5
θ
c
o
s
2
θ
+
c
o
s
5
θ
s
i
n
2
θ
s
i
n
3
θ
c
o
s
2
θ
+
c
o
s
3
θ
s
i
n
2
θ
=
s
i
n
2
θ
c
o
s
2
θ
(
s
i
n
3
θ
+
c
o
s
3
θ
)
s
i
n
2
θ
c
o
s
2
θ
(
s
i
n
θ
+
c
o
s
θ
)
=
s
i
n
(
3
)
θ
+
c
o
s
(
3
)
θ
s
i
n
(
1
)
θ
+
c
o
s
(
1
)
θ
=
f
(
3
)
f
(
1
)