Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For positive integer n, define f(n)=n+(16+5 n-3 n2/4 n+3 n2)+(32+n-3 n2/8 n+3 n2)+(48-3 n-3 n2/12 n+3 n2)+ ldots+(25 n-7 n2/7 n2) Then, the value of displaystyle lim n arrow ∞ f(n) is equal to
Q. For positive integer
n
, define
f
(
n
)
=
n
+
4
n
+
3
n
2
16
+
5
n
−
3
n
2
+
8
n
+
3
n
2
32
+
n
−
3
n
2
+
12
n
+
3
n
2
48
−
3
n
−
3
n
2
+
…
+
7
n
2
25
n
−
7
n
2
Then, the value of
n
→
∞
lim
f
(
n
)
is equal to
826
138
JEE Advanced
JEE Advanced 2022
Report Error
A
3
+
3
4
lo
g
e
7
11%
B
4
−
4
3
lo
g
e
(
3
7
)
67%
C
4
−
3
4
lo
g
e
(
3
7
)
22%
D
3
+
4
3
lo
g
e
7
0%
Solution:
f
(
n
)
=
n
+
r
=
1
∑
n
4
r
n
+
3
n
2
16
r
+
(
9
−
4
r
)
n
−
3
n
2
f
(
n
)
=
n
+
r
=
1
∑
n
4
r
n
+
3
n
2
(
16
r
+
9
n
)
−
(
4
r
n
+
3
n
2
)
f
(
n
)
=
n
+
(
r
=
1
∑
n
4
r
n
+
3
n
2
16
r
+
9
n
)
−
n
n
→
∞
lim
f
(
n
)
=
n
→
∞
lim
∑
4
r
n
+
3
n
2
16
r
+
9
n
=
n
→
∞
lim
r
=
1
∑
n
4
(
n
r
)
+
3
(
16
(
n
r
)
+
9
)
n
1
=
0
∫
1
4
x
+
3
16
x
+
9
d
x
=
0
∫
1
4
d
x
−
0
∫
1
4
x
+
3
3
d
x
=
4
−
4
3
(
ℓ
n
∣4
x
+
3∣
)
0
1
=
4
−
4
3
ℓ
n
3
7