Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For non-negative integers n, let f(n) = ( displaystyle∑nk = 1sin((k+1/n+2)π) sin ((k+2/n+2)π)/ displaystyle∑nk = 1 sin2((k+1)n+2π)) Assuming cos-1x takes values in [0, π], which of the following options is/are correct?
Q. For non-negative integers n, let
f
(
n
)
=
k
=
1
∑
n
s
i
n
2
(
n
+
2
k
+
1
π
)
k
=
1
∑
n
s
in
(
n
+
2
k
+
1
π
)
s
in
(
n
+
2
k
+
2
π
)
Assuming
co
s
−
1
x
takes values in
[
0
,
π
]
, which of the following options is/are correct?
2412
206
JEE Advanced
JEE Advanced 2019
Report Error
A
f(4) =
2
3
40%
B
l
i
m
n
→
∞
f
(
n
)
=
2
1
120%
C
If
α
=
t
an
(
co
s
−
1
f
(
6
)
)
,
then
α
2
+
2
α
−
1
=
0
40%
D
s
in
(
7
co
s
−
1
f
(
5
)
)
=
0
60%
Solution:
f
(
n
)
=
k
=
1
∑
n
(
1
−
cos
(
n
+
2
2
k
+
2
)
π
)
k
=
1
∑
n
(
cos
(
n
+
2
π
)
−
cos
(
n
+
2
2
k
+
3
)
π
)
f
(
n
)
=
(
n
+
1
)
−
(
k
=
1
∑
n
cos
(
n
+
2
2
k
+
2
)
π
)
(
n
+
1
)
cos
(
n
+
2
π
)
−
(
k
=
1
∑
n
cos
(
n
+
2
2
k
+
3
)
π
)
f
(
n
)
=
(
n
+
1
)
−
(
s
in
(
n
+
2
π
)
s
in
(
n
+
2
(
n
+
1
)
ππ
)
.
cos
(
2
(
n
+
2
)
2
(
n
+
2
)
π
)
)
(
n
+
1
)
cos
n
+
2
π
−
(
s
in
(
n
+
2
π
)
s
in
(
n
+
2
(
n
+
1
)
π
)
.
cos
(
n
+
2
n
+
3
)
π
)
f
(
n
)
=
(
n
+
1
)
+
1
(
n
+
1
)
cos
(
n
+
2
π
)
+
cos
(
n
+
2
π
)
⇒
g
(
x
)
=
cos
(
n
+
2
π
)
(
A
)
s
in
(
7
co
s
−
1
7
π
)
=
s
in
π
=
0
(
B
)
f
(
4
)
=
cos
6
π
=
2
3
(
C
)
n
→
∞
lim
cos
(
n
+
2
π
)
=
1
(
D
)
α
=
t
an
(
co
s
−
1
cos
8
π
)
=
2
−
1
⇒
α
+
1
2
α
2
+
2
α
−
1
=
0