∵(1−y)m(1+y)n=(mC0−mC1y+mC2y2−...)(nC0−nC1y+nC2y2+...) ∴a1= coefficient of y in (1−y)m(1+y)n =nC1−mC1=10 ⇒n−m=10 ⇒n=m+10
and a2= coefficient of y2 in (1−y)m(1+y)n =nC2−mC1⋅nC1+mC2 ∴nC2−mC1⋅nC1+mC2=10 ⇒2n(n−1)+2m(m−1)−mn=10 ⇒2(10+m)(9+m)+2m(m−1) −m(10+m)=10(usingEq.(i)) ⇒45−5m+29m−2m2+2m2−2m=10 ⇒45−m=10⇒m=35 ∴n=45(usingEq.(i)) ∴(m,n)=(3,45)