Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For n ∈ Z, the general solution of the trigonometric equation sin x-√3 cos x +4 sin 2 x-4 √3 cos 2 x+ sin 3 x-√3 cos 3 x=0 is
Q. For
n
∈
Z
, the general solution of the trigonometric equation
sin
x
−
3
cos
x
+
4
sin
2
x
−
4
3
cos
2
x
+
sin
3
x
−
3
cos
3
x
=
0
is
1134
205
TS EAMCET 2019
Report Error
A
2
nπ
+
8
π
B
2
nπ
+
6
π
C
2
nπ
±
6
π
D
2
nπ
±
6
π
Solution:
We have,
sin
x
−
3
cos
x
+
4
sin
2
x
−
4
3
cos
2
x
+
sin
3
x
−
3
cos
3
x
=
0
2
1
sin
x
−
2
3
cos
x
+
2
4
sin
2
x
−
2
4
3
cos
2
x
+
2
1
sin
3
x
−
2
3
cos
3
x
−
0
sin
(
x
−
3
π
)
+
4
sin
(
2
x
−
3
π
)
+
sin
(
3
x
−
3
π
)
=
0
sin
(
x
−
3
π
)
+
sin
(
3
x
−
3
π
)
+
4
sin
(
2
x
−
3
π
)
=
0
2
sin
(
2
x
−
3
π
)
cos
x
+
4
sin
(
2
x
−
3
π
)
=
0
2
sin
(
2
x
−
3
π
)
(
cos
x
+
2
)
=
0
sin
(
2
x
−
3
π
)
=
0
,
cos
x
+
2
=
0
⇒
2
x
−
3
π
=
nπ
⇒
2
x
=
nπ
+
3
π
⇒
x
=
2
nπ
+
6
π