Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For n ∈ N, If A n= cos ((π/2n))+i sin ((π/2n)), then ( A 1 A 2 A 3 A 4)4=
Q. For
n
∈
N
, If
A
n
=
cos
(
2
n
π
)
+
i
sin
(
2
n
π
)
, then
(
A
1
A
2
A
3
A
4
)
4
=
1488
202
TS EAMCET 2020
Report Error
A
2
−
1
−
i
B
1
C
0
D
2
1
−
i
Solution:
It is given that,
A
n
=
cos
(
2
n
π
)
+
i
sin
(
2
n
π
)
,
n
∈
N
=
e
i
(
2
n
π
)
∴
(
A
1
A
2
A
3
A
4
)
4
=
e
iπ
(
2
1
+
4
1
+
8
1
+
16
1
)
4
=
e
i
4
15
π
=
e
i
(
4
π
−
4
π
)
=
cos
(
4
π
−
4
π
)
+
i
sin
(
4
π
−
4
π
)
=
cos
4
π
−
i
sin
4
π
=
2
1
−
i