Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For m>1, n>1, the value of c for which the Rolle's theorem is applicable for the function f(x)=x2 m-1(a-x)2 n in (0, a) is
Q. For
m
>
1
,
n
>
1
, the value of
c
for which the Rolle's theorem is applicable for the function
f
(
x
)
=
x
2
m
−
1
(
a
−
x
)
2
n
in
(
0
,
a
)
is
2578
164
AP EAMCET
AP EAMCET 2019
Report Error
A
m
+
2
n
−
1
2
am
−
1
0%
B
2
m
+
2
n
a
(
m
−
n
+
1
)
100%
C
2
m
+
2
n
−
1
a
(
2
m
−
1
)
0%
D
m
+
n
−
1
a
(
2
m
+
1
)
0%
Solution:
Since it is given that Rolle's theorem is applicaple for the function
f
(
x
)
=
x
2
m
−
1
(
a
−
x
)
2
n
in
(
0
,
a
)
.
So,
f
′
(
x
)
=
(
2
m
−
1
)
x
2
m
−
2
(
a
−
x
)
2
n
−
2
n
(
a
−
x
)
2
n
−
1
x
2
m
−
1
at
x
=
c
,
m
>
1
,
n
>
1
f
′
(
c
)
=
0
⇒
(
2
m
−
1
)
c
2
m
−
2
=
2
n
c
2
m
−
1
(
a
−
c
)
2
n
−
1
⇒
c
(
2
m
−
1
)
=
a
−
c
2
n
⇒
c
=
2
n
+
2
m
−
1
a
(
2
m
−
1
)