Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For I(x)=∫ ( sec 2 x-2022/ sin 2022 x) d x, if I((π/4))=21011 then
Q. For
I
(
x
)
=
∫
s
i
n
2022
x
s
e
c
2
x
−
2022
d
x
, if
I
(
4
π
)
=
2
1011
then
3544
2
JEE Main
JEE Main 2022
Integrals
Report Error
A
3
1010
I
(
3
π
)
−
I
(
6
π
)
=
0
0%
B
3
1010
I
(
6
π
)
−
I
(
3
π
)
=
0
100%
C
3
1011
I
(
3
π
)
=
I
(
6
π
)
−
0
0%
D
3
1011
I
(
6
π
)
−
I
(
3
π
)
=
0
0%
Solution:
I
(
x
)
=
II
∫
sec
2
x
⋅
I
sin
−
2022
x
d
x
−
2022
∫
sin
−
2022
x
d
x
=
t
a
n
x
⋅
(
sin
x
)
−
2022
+
∫
(
2022
)
tan
x
⋅
(
sin
x
)
−
2023
cos
x
d
x
−
2022
∫
(
sin
x
)
−
2022
d
x
I
(
x
)
=
(
tan
x
)
(
sin
x
)
−
2022
+
C
At
X
=
π
/4
,
2
1011
=
(
2
1
)
−
2022
+
C
∴
C
=
0
Hence
I
(
x
)
=
(
s
i
n
x
)
2022
t
a
n
x
I
(
π
/6
)
=
3
(
2
1
)
2022
1
=
3
2
2022
I
(
π
/3
)
=
(
2
3
)
2022
3
=
(
3
)
2021
2
2022
=
3
1010
1
I
(
6
π
)
3
1010
I
(
π
/3
)
=
I
(
π
/6
)