Given Hyperbola cos2αx2−sin2αy2=1
given that the angle α varies
We have a=cosα,b=sinα
now eccentricity e=aa2+b2=cosαcos2α+sin2α=cosα1
Thus eccentricity varies with α.
Now foci (±ae,0)=(1,0) Independent of α.
Vertex (±a,0)=(cosα,0) dependent on α.
Directrix is given by x=±ea=cos2α
so dependent on α.
So abscissae of foci are independent of α.