For f(x)=xcos(x1),x≥1 f′(x)=cos(x1)+x1sin(x1)→1 for x→∞
also f′′(x)=x21sin(x1)−x21sin(x1)−x31cos(x1) =−x31cos(x1)<0 for x≥1 ⇒f′(x) is decreasing for [1,∞) ⇒f′(x+2)<f′(x)
Also, x→∞limf(x+2)−f(x) =x→∞lim[(x+2)cosx+21−xcosx1]=2 ∴f(x+2)−f(x)>2∀x≥1