Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For f( x )= x 4+| x |, let I 1=∫ limits0π f( cos x ) dx and I 2=∫ limits0π / 2 f( sin x ) dx then ( I 1/ I 2) has the value equal to
Q. For
f
(
x
)
=
x
4
+
∣
x
∣
, let
I
1
=
0
∫
π
f
(
cos
x
)
d
x
and
I
2
=
0
∫
π
/2
f
(
sin
x
)
d
x
then
I
2
I
1
has the value equal to
129
153
Integrals
Report Error
A
1
B
1 / 2
C
2
D
4
Solution:
Clearly f is an even function, hence
I
1
=
0
∫
π
f
(
cos
(
π
−
x
)
d
x
=
0
∫
π
f
(
−
cos
x
)
d
x
=
∫
0
π
f
(
cos
x
)
d
x
∴
I
1
=
2
0
∫
π
/2
f
(
cos
x
)
d
x
=
2
0
∫
π
/2
f
(
sin
x
)
d
x
=
2
I
2
⇒
I
2
I
1
=
2