f(x) can't be constant throughout the domain. Hence we can find xâ(r,s) such that f(x) is one-one
option (A) is true.
Option (B) : fâ˛(x0â)âŁ=âŁâŁâ4f(0)âf(â4)ââŁâŁââ¤1 (LMVT)
Option (C) : f(x)=sin(85âx) satisfies given condition.
But limxâââsin(85â) D.N.E. â Incorrect
Option (D) : g(x)=f2(x)+(fâ˛(x))2 âŁfâ˛(x1â)â¤1 (by LMVT) âŁf(x1â)âŁâ¤2 (given) âg(x1â)â¤5âx1ââ(â4,0)
Similarly g(x2â)â¤5âx2ââ(0,4) g(0)=85âg(x) has maxima in (x1â,x2â) say at Îą . gâ˛(Îą)=0&g(Îą)âĽ85 2fâ˛(Îą)(f(Îą)+f"(Îą))=0
If fâ˛(Îą)=0âg(Îą)=f2(Îą)âĽ85 Not possible âf(Îą)+f"(Îą)=0âÎąâ(x1â,x2â)â(â4,4)