Given, f(x)=1!x+2!3x2+3!7x3+4!15x4+… =1!(21−1)x+2!(22−1)x2+,3!(23−1)x3+4!(24−1)x4+… =1!2x+2!(2x)2+3!(2x)3+4!(2x)4+… =(1!x+2!x2+3!x3+4!x4+…) =1+1!2x+2!(2x)2+3!(2x)3+4!(2x)4+… −(1+1!x+2!x2+3!x3+4!x4+…) ⇒f(x)=e2x−ex
When we put x=0, we get f(0)=e0−e0=1−1=0
Hence, exactly one real solution exists.