Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For every real number x, let f(x)=(x/1!)+(3/2!)x2+(7/3!)x3+(15/4!)x4+ ... . Then the equation f(x) = 0 has
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. For every real number $x$, let $f\left(x\right)=\frac{x}{1!}+\frac{3}{2!}x^{2}+\frac{7}{3!}x^{3}+\frac{15}{4!}x^{4}+ ... $. Then the equation $f(x) = 0$ has
WBJEE
WBJEE 2014
Sequences and Series
A
no real solution
0%
B
exactly one real solution
0%
C
exactly two real solutions
0%
D
inifinite number of real solutions
100%
Solution:
Given,
$f(x)=\frac{x}{1 !}+\frac{3}{2 !} x^{2}+\frac{7}{3 !} x^{3}+\frac{15}{4 !} x^{4}+\ldots$
$=\frac{\left(2^{1}-1\right) x}{1 !}+\frac{\left(2^{2}-1\right) x^{2}}{2 !}+\frac{\left(2^{3}-1\right) x^{3}}{, 3 !}+\frac{\left(2^{4}-1\right)}{4 !} x^{4}+\ldots$
$=\frac{2 x}{1 !}+\frac{(2 x)^{2}}{2 !}+\frac{(2 x)^{3}}{3 !}+\frac{(2 x)^{4}}{4 !}+\ldots$
$=\left(\frac{x}{1 !}+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right)$
$=1+\frac{2 x}{1 !}+\frac{(2 x)^{2}}{2 !}+\frac{(2 x)^{3}}{3 !}+\frac{(2 x)^{4}}{4 !}+\ldots$
$-\left(1+\frac{x}{1 !}+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right)$
$\Rightarrow f(x)=e^{2 x}-e^{x}$
When we put $x=0$, we get
$f(0)=e^{0}-e^{0}=1-1=0$
Hence, exactly one real solution exists.