Given, equations of straight lines are< br> xsinθ+(1−cosθ)y=asinθ....(i)…
and xsinθ−(1+cosθ)y=−asinθ…....(ii)
Subtracting Eq. (ii) from Eq. (i), we get ⇒⇒(1−cosθ)y+(1+cosθ)y=2asinθy[1−cosθ+1+cosθ]=2asinθy=asinθ
Putting the value of y in Eq. (i), we get xsinθ+(1−cosθ)asinθ=asinθ ⇒⇒⇒ Now, ⇒⇒x2+y2sinθ[x+(1−cosθ)a]=asinθx+a−acosθ=ax−acosθ=0⇒x=acosθx2+y2=(acosθ)2+(asinθ)2x2+y2=a2cos2θ+a2sin2θ=a2(cos2θ+sin2θ)[∵sin2θ+cos2θ=1] ⇒x2+y2=a2, whose represent a circle.