Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For any real number x, let cot -1 x denote the unique real number θ in (0, π) such that cot θ=x If undersetn arrow ∞ textLim displaystyle∑k=1n cot -1(1+k+k2)= cot -1(α)+ cot -1(β), where α, β are prime numbers, then find (α+β).
Q. For any real number
x
, let
cot
−
1
x
denote the unique real number
θ
in
(
0
,
π
)
such that
cot
θ
=
x
If
n
→
∞
Lim
k
=
1
∑
n
cot
−
1
(
1
+
k
+
k
2
)
=
cot
−
1
(
α
)
+
cot
−
1
(
β
)
, where
α
,
β
are prime numbers, then find
(
α
+
β
)
.
152
157
Inverse Trigonometric Functions
Report Error
Answer:
5
Solution:
k
=
1
∑
n
cot
−
1
(
1
+
k
+
k
2
)
=
tan
−
1
(
n
+
1
)
−
tan
−
1
1
take
n
→
∞
Lim
, we get R.H.S.
=
2
π
−
4
π
=
4
π
=
tan
−
1
(
α
1
)
+
tan
−
1
(
β
1
)
⇒
(
α
−
1
)
(
β
−
1
)
=
2
∴
α
=
3
,
β
=
2
(or
α
=
2
,
β
=
3
)
∴
Answer
=
5