Q.
For any real number $x$, let $\cot ^{-1} x$ denote the unique real number $\theta$ in $(0, \pi)$ such that $\cot \theta=x$
If $\underset{n \rightarrow \infty}{\text{Lim}} \displaystyle\sum_{k=1}^n \cot ^{-1}\left(1+k+k^2\right)=\cot ^{-1}(\alpha)+\cot ^{-1}(\beta)$, where $\alpha, \beta$ are prime numbers, then find $(\alpha+\beta)$.
Inverse Trigonometric Functions
Solution: