Let, x=2n+1 and y=2n−1⇒x2+y2=4n x2−y2=2
Also, xy=4n2−1
So, f(n)=x+yx2+y2+xy=x2−y2x3−y3=2x3−y3 =21((2n+1)23−(2n−1)23)
Substituting n=1 to 40, we get f(1)=21(323−123) f(2)=21(523−323) f(3)=21(723−523) f(40)=21((81)23−(79)23) ∑f(n)n=140=21((81)23−123)=2729−1=364 ⇒∑n=140f(n)=364