Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For any 3 × 3 matrix M, let |M| denote the determinant of M. Let I be the 3 × 3 identity matrix. Let E and F be two 3 × 3 matrices such that ( I - EF ) is invertible. If G =( I - EF )-1, then which of the following statements is(are) TRUE?
Q. For any
3
×
3
matrix
M
, let
∣
M
∣
denote the determinant of
M
. Let
I
be the
3
×
3
identity matrix. Let
E
and
F
be two
3
×
3
matrices such that
(
I
−
EF
)
is invertible. If
G
=
(
I
−
EF
)
−
1
, then which of the following statements is(are) TRUE?
2897
157
JEE Advanced
JEE Advanced 2021
Report Error
A
∣
FE
∣
=
∣
I
−
FE
∣∣
FGE
∣
50%
B
(
I
−
FE
)
(
I
+
FGE
)
=
I
100%
C
EFG
=
GEF
100%
D
(
I
−
FE
)
(
I
−
FGE
)
=
I
50%
Solution:
G
(
I
−
EF
)
=
(
I
−
EF
)
G
=
I
⇒
G
−
GEF
=
G
−
EFG
=
I
... (1)
(A)
∣
FE
∣
=
∣
I
−
FE
∣∣
FGE
∣
=
∣
FGE
−
FEFGE
∣
=
∣
FGE
−
F
(
G
−
I
)
E
∣
=
∣
FGE
−
FGE
+
FE
∣
=
∣
FE
∣
(B)
(
I
−
FE
)
(
I
+
FGE
)
=
I
+
FGE
−
FE
−
FEFG
H
=
I
+
FGE
−
FE
−
F
(
G
−
I
)
E
=
I
+
FGE
−
FE
−
FGE
+
FE
=
I
(C) From (I) it is true
(D)
(
I
−
FE
)
(
I
−
FGE
)
=
I
−
FGE
−
FE
+
FEFGE
=
I
−
FGE
−
FE
+
F
(
G
−
I
)
E
=
I
−
FGE
−
FE
+
FGE
−
FE
=
I
−
2
FE