∵a1+a3+a5=−12a+(a+2d)+(a+4d)=−12(∵d>0)⇒a+2d=−4 ...(i) and a1a3a5=80⇒a(a+2d)(a+4d)=80⇒a(−4)(−4−2d+4d)=80 [from Eq. (i)] ⇒(−4−2d)(−4)(−4−2d+4d)=80⇒4(4+2d)(−4+2d)=80⇒4(4d2−16)=80⇒4d2=16+20=36⇒d2=9∴d=±3 Since, AP is increasing, then d=+3;a=−10∴a1=−10;a2=−7a3=a+2d=−10+6=−4a5=a+4d=−10+8=−2