Q.
For all positive integers n,7n7+5n5+32n3−105n is a/an
1512
213
Principle of Mathematical Induction
Report Error
Solution:
Let P(n)=7n7+5n5+32n3−105n is an integer.
For n=1 P(1)7(1)7+5(1)5+32(1)3−105(1) =71+51+32−1051 =10515+21+70−1=105106−1 =105105=1 ∴P(1) is true.
Let P(k) be true, then P(k)=7k7+5k5+32k3−105k is an integer ∴7k7+5k5+32k3−105k=m,m∈Z...(i)
For n=k+1, we have P(k+1)=7(k+1)7+5(k+1)5+32(k+1)3−105(k+1) =71(k7+7k6+21k5+35k4+35k3+21k2+7k+1) +51(k5+5k4+10k3+10k2+5k+1) +32(k3+3k2+3k+1)−105k−1051 =(7k7+5k5+32k3−105k)+k6+3k5+6k4 +7k3+7k2+4k+1 =m+k6+3k5+6k4+7k3+7k2+4k+1[Using (i)]
= an integer
Thus P(k) is true ⇒P(k+1) is true.
Hence by principle of mathematical induction, P(n) is true
for all positive integers n.