Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For all p, such that 1 ≤ p ≤ 100, if n(Ap)=p+2 and A1 ⊂ A2 ⊂ A3 ⊂ ⋅s ⊂ A100 and displaystyle⋂p=3100 Ap=A, then n(A)=
Q. For all
p
, such that
1
≤
p
≤
100
, if
n
(
A
p
)
=
p
+
2
and
A
1
⊂
A
2
⊂
A
3
⊂
⋯
⊂
A
100
and
p
=
3
⋂
100
A
p
=
A
, then
n
(
A
)
=
145
134
Sets and Relations
Report Error
A
3
B
4
C
5
D
6
Solution:
(i) When
A
1
⊂
A
2
⊂
…
⊂
A
n
then
i
=
1
⋂
n
A
i
=
A
1
(ii) If
A
⊂
B
, then
A
∩
B
=
A
.
(iii)
p
=
3
⋂
100
A
p
=
A
3
.
(iv) Find
n
(
A
3
)
by using
n
(
A
p
)
=
p
+
2
.