Q.
For a real variable a>1, consider the points Ak=(ka,ak),k=1,2,…n in the cartesian plane. If α and β represent respectively the arithmetic mean of x coordinates and the geometric mean of y coordinates of Ak. then the locus of the point P(α,β) is
We have a=na+2a+3a+…+na =na[1+2+3+…+n] =2nan(n+1)=2a(n+1)
and β=(a⋅a2⋅a3⋅a4…an)1/n =(a1+2+3+…n)1/n=a(2n(n+1))1/n=a2n+1
Now, β2=an+1
and (n+12α)n+1=(2(n+1)2a(n+1))n+1=an+1 ∴β2=(n+12α)n+1
So, locus of point P(α,β) is y2=(n+12x)n+1