Multiplicative loop is very important approach in IIT
Mathematics (tan2θ)(1+secθ)=cosθ/2sinθ/2[1+cosθ1] =(cosθ/2)2cosθ(sinθ/2)2cos2θ/2 =cosθ(2sinθ/2)cosθ/2=cosθsinθ=tantheta ∴fn(θ)=(tanθ/2)(1+secθ) =(1+sec2θ)(1+sec22θ)...(1+sec2nθ) =(tanθ)(1+sec2θ)(1+sec22θ)(1+sec22θ)....(1+sec2nθ) tan2θ.(1+sec22θ)...(1+sec2nθ) =tan(2nθ)
Now, f2(16π)=tan(2216π)=tan(4π)=1
Therefore, (a) is the answer. f3(32π)=tan(2332π)=tan(4π)=1
Therefore, (b) is the answer. f4(64π)=tan(2464π)=tan(4π)=1
Therefore, (c) is the answer. f5(128π)=tan(25128π)=tan(4π)=1
Therefore, (d) is the answer.