Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For a ∈ ℝ, |a| > 1, let displaystyle limn → ∞ ((1+√[3]2+⋅s+√[3]n/n7/3((1)(an+1)2+(1)(an+2)2+⋅s+(1/(an+n)2))) = 54. Then the possible value(s) of a is/are
Q. For a
∈
ℝ,
∣
a
∣
>
1
,
let
n
→
∞
lim
⎝
⎛
n
7/3
(
(
an
+
1
)
2
1
+
(
an
+
2
)
2
1
+
⋯
+
(
an
+
n
)
2
1
)
1
+
3
2
+
⋯
+
3
n
⎠
⎞
=
54.
Then the possible value(s) of a is/are
3760
203
JEE Advanced
JEE Advanced 2019
Report Error
A
-9
57%
B
-6
29%
C
7
0%
D
8
171%
Solution:
n
→
∞
lim
n
7/3
(
r
=
1
∑
n
(
an
+
r
)
2
1
)
n
1/3
(
r
=
1
∑
n
(
n
r
)
1/3
)
=
54
⇒
n
→
∞
lim
⎝
⎛
n
1
r
=
1
∑
n
(
a
+
r
/
n
)
2
1
n
1
r
=
1
∑
n
(
n
r
)
1/3
⎠
⎞
=
54
⇒
0
∫
1
(
a
+
x
)
2
1
d
x
0
∫
1
x
1/3
d
x
=
54
⇒
a
(
a
+
1
)
1
4
3
=
54
⇒
a
(
a
+
1
)
=
72
⇒
a
2
+
a
−
72
=
0
⇒
a
=
−
9
,
8