Q.
For a complex number z, let Re(z) denote the real part of z. Let S be the set of all complex numbers z satisfying z4−∣z∣4=4iz2, where i=−1. Then the minimum possible value of ∣z1−z2∣2, where z1,z2∈S with Re(z1)>0 and Re(z2)<0, is ______.
z4−∣z∣4=4iz2 z4−z2⋅z2=4iz2 ⇒z2=0 or z2−z2=4i
Let z=x+iy ⇒(z+z)(z−z)=4i ⇒2x⋅2iy=4i ⇒xy=1 z1 lies on xy=1 in first quadrant
and z2 lies on xy=1 in third quadrant. ⇒∣z1−z2∣2 is minimum
when z1≡(1,1) and z2=(−1,−1) ⇒∣z1−z2∣2=8