Q.
For a complex number Z , if the argument of (Z−a)(Zˉ−b) is 4π or 4−3π (where a,b are two real numbers), then the value of ab such that the locus of Z represents a circle with centre 23+2i is (where, i2=−1 )
Let, Z=x+iy , then (Z−a)(Zˉ−b)=ZZˉ−aZˉ−bZ+ab =(x2+y2)−a(x−iy)−b(x+iy)+ab =(x2+y2)−(a+b)x+i(a−b)y+ab
If the argument of the above complex number is 4π or −43π , then x2+y2−(a+b)x+ab=(a−b)y ⇒ Centre of the circle is (2a+b,2a−b) ⇒2a+b=23&2a−b=21 ⇒a=2,b=1⇒ab=2